#8 a whole heap of trouble
malloc, calloc, realloc

CS 341

#1 Review:
Why put the heap so far away from the stack?

What will you find below the end of the stack and above the top of the heap?

Both'lan N ! o stte s = Hor otoel
v T ‘-/:,r } {'."! v: :'l',‘ Y A ;.<_! vERFVE (G H UL Qicon
#2 What value will be printed?
01 int a = 10;
02 int* ptr = &a;
03 pid t child = fork();
04 if(child == 0) { * ptr = 20; ptr = NULL;}
05 else {
06 waitpid(child, NULL,O0);
07 printf ("%d", * ptr); [¥ R
08) ks —s 350
[hdraiie heon),,1-, & bile . bl (oo — |
L / i v hablg] 7 —
#3 What does sbrk do?

"sbrk increases the process's data segment by n bytes"
but what does this mean?

Loy e Ghwan PABRICY, (Der. D2 O T ipe
#4 A very simple heap memory allocator
01 . dvoid* malloc (unsigned int numbytes) { _oéfun Owfdorg
02 ‘printf ("Top of heap was %p\n", sbrk(0)); // safe??
03
04 void* ptr = sbrk(numbytes);
05 if (ptr == (void*) -1) return NULL; // no mem for you!
06 ,
07 jprintf("Now you have some mem at %p\n",ptr);
08 —— - 5 UGS, vianlly Oy e Wt
09 return ptr;
10 }
11
12 void free (void*mem) { }

What are the limitations of the above allocator?

How can we improve it?

#5 How do I use calloc?
void* calloc(size t count, size t size);

loulle ¥ result

#6 Implement your own calloc using memset and malloc:
// void * memset (void *b, int c, size t len);

void* mycalloc(size t count, size t size) {

#7 How does I use realloc?
void * realloc(void *oldptr, size t size);

Placement Strategies - Best Fit. Worst Fit. First Fit Allocation

Suppose the heap is managed with a linked list. Each node in the list is either allocated or free. The list is sorted by address.
When malloc () is called, the list is searched for a free segment that is big enough (depending on the allocation
algorithm), that segment is divided into an allocated segment (at the beginning) and a free segment. When free () is
called, the corresponding segment should merge with its neighboring segments, if they are also free. A process has a heap
of 13KB, which is initially unallocated. During its execution, the process issues the following memory allocate/de-allocate
calls (pA. . . pE are void* pointers). In all cases, break ties by choosing the earliest segment. Also, assume all algorithms

allocate memory from the beginning of the free segment they choose.

PA = malloc (3KB)
PB = malloc (4KB)
PC = malloc (3KB)
free (pB)
pPD = malloc (3KB)
free (pA)

PE = malloc (1KB)

For simplicity, assume the memory begins at address 0, and ignore the memory used by the linked list itself. Show the heap
allocation after the above calls, using best-fit, worst-fit and first-fit algorithms respectively.

Best Fit:
0K 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K
¢ Starting address of pD= Kand pE = K

Worst Fit:

0K 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K
Starting address of pD = K and pE = K

First Fit:

0K 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K
Starting address of pD = Kand pE = K

What is Fragmentation? What happens if heap memory is severely fragmented?

Best Fit outcome?

Worst Fit outcome?

First Fit outcome?

