#18 Barriers.

Cs 341 ‘Deadlock. The Reader-Writer Problem

Challenge 1: "Make a barrier using only one mutex lock() and unlock() call!"
"Impossible! Line 2 is a Critical Section, if a thread has locked the mutex..."

But here is an awful solution. (Why is this a "‘poor' solution?)

01 wvoid barrier() {

[o.l
02 count ++

unlouk
03 while(count != N) 2% 3 = .;g-hfg il anlﬁa wivk if
04

CPU updode the wache for Btis Bhreadd
05 }
whan ofﬂtevgupm it

2. When is disabling interrupts a solution to the Critical Section Problem?

pthread mutex lock =>{disable interrupts on the CPU }
pthread mutex unlock => {enable interrupts on the CPU }

Are there limitations to this approach? thg_ wirk T [CPM, Pc 2

3. Challenge II: Create a barrier using each of the following lines once.
All 5 threads must call barrier before they all continue.

earlier... sem init(&s,0, D ?)
Rearrange the following!

e m

int remain =5;

void barrier () {
sem wait (&s);
sem post (&s);
remain --; Yemoyn ——
pthread mutex lock (&m); anlach
pthread mutex unlock (&m); "’F (remain)

if (remain) .
} Sem. Wen't

4. |s there a Race condition? [P e PST
-5 loct

pleaseStop = 1

p cond broadcast (&cv)

M
while (!pleaseStop)
p cond wait (&cv, &m)

L

[Av\ Letlﬁ.
U wlode

i om ouent Hhat Nevew heppens
5. Deadlock: " Wmh,ﬁ '{‘W "

Use two mutex locks and two threads to create an example of deadlock

Thread1: [0¢% 771 Thread 2: (@& ™<
b M2 loh m [

wuloyle mi, m2 Qnlode T, 7T

Use three counting semaphores and three threads to deadlock 3 threads

thread #1: thread #2: thread #3:
Sem _woit (51) walt £52) wait (5D
post (52) post €3%) post (31

- Must deadlock involve threads? What about single-threaded processes?

6. What is the Resource Allocation Graph for deadlock detection?

7. The Reader Writer problem

A common problem in many different system applications

read_ database(table, query) {...}

| update_row(table, id, value) {...}

cache_lookup(id) {...}

| cache_modify(id, value) {...}

8. ReaderWriter locks are useful primitives & included in the pthread library!

01 pthread rwlock t lock; 01

02
02 p_ rwlock init 03
03 p_rwlock wrlock-> erdusive | 04
04 p_rwlock_rdlock 05
05 p rwlock unlock 06

cache lookup (id) {

}

p...rdlock(...)
read from resourc
p...unlock(...)

return result

of
edors

} D /94‘5
e
re

w]n,i[e wwifers Wy."ff/\ﬁ./ will vesdevs smply et 9
CS241: synch. skills and the ability to build these! Along the way,
also learn to reason about, develop and fix multi-threaded code

9. ~~ Welcome to the Reader Writer Game Show! ~~

Contestant #1

p_mutex t *readlock, *writelock
readlock=malloc (sizeof p mutex t)
writelock=malloc (sizeof p mutex t)
p m init (readlock,NULL)

P m init(writelock,NULL)

read ()
lOCk(readlock
// do read 400 slow shee

unlock (readlock)

0 5 cwondns
} no Y

write () {

lock (writelock)
lock (readlock)

// do writing
unlock (readlock)
unlock (writelock)

}

readding

Is #1 a Solution? Problems?

pover Shwts wiiting if

Contestant #2 .
bool reading=0, writing=0 Mﬁﬂe,;ud'% hﬂwm;
read () { write() { |/
while (writing) {}& "€ | syhile (| lwriting) (}
reading = true writing = true
// do reading here // do writing here
reading = false writing = false
} }
Is #2 a Solution? Problems?
Contestant #3
read () { write () {
lock (&m) lock (&m)
while (writing) while (reading| |writing)

cond wait (cv,m)
reading++

/* Read here! */
reading--
cond signal (cv)
unlock (&m)

cond wait (cv,m)
writing++
*/

/* Write here!

writing--;
cond signal (cv)
unlock (&m)

Is #3 a Solution? Problems?

