
CS 341 #18 Barriers.
Deadlock. The Reader-Writer Problem

Challenge 1: "Make a barrier using only one mutex lock() and unlock() call!"

"Impossible! Line 2 is a Critical Section, if a thread has locked the mutex..."

But here is an awful solution. (Why is this a 'poor' solution?)
01 void barrier() {

02 count ++

03 while(count != N) ?
04

05 }

2. When is disabling interrupts a solution to the Critical Section Problem?

pthread_mutex_lock => { disable interrupts on the CPU }
pthread_mutex_unlock => {enable interrupts on the CPU }

Are there limitations to this approach?

3. Challenge II: Create a barrier using each of the following lines once.
All 5 threads must call barrier before they all continue.

int remain =5; earlier... sem_init(&s,0,___?)
void barrier() { ... Rearrange the following!
 sem_wait(&s);
 sem_post(&s);
 remain --;
 pthread_mutex_lock(&m);
 pthread_mutex_unlock(&m);
 if(remain)
}
4. Is there a Race condition?

pleaseStop = 1
p_cond_broadcast(&cv)

while(!pleaseStop)
 p_cond_wait(&cv,&m)

5. Deadlock: " ___"

Use two mutex locks and two threads to create an example of deadlock
Thread1:

Thread 2:

Use three counting semaphores and three threads to deadlock 3 threads
thread #1:

thread #2: thread #3:

- Must deadlock involve threads? What about single-threaded processes?

6. What is the Resource Allocation Graph for deadlock detection?

locum
lockma

lockme

www mu

commi
unlockmema unlockmi.me

loch

h
s3 thiswillonlyworkif semwaitcan waitCsa wait s3

postes Xtc postistCpuupdatethecacheforthisthreads

maywornforCpuPc

avoid
hold
wait

lookm
remain
union
ifcremains
semwait

y lock addonepizzawakeup

w
20 8

thelast

Loneandthenewthreadcallsanother

union

7. The Reader Writer problem
A common problem in many different system applications
read_database(table, query) {...} update_row(table, id, value) {...}

cache_lookup(id) {...} cache_modify(id, value) {...}

8. ReaderWriter locks are useful primitives & included in the pthread library!

01 pthread_rwlock_t lock;

02 p_rwlock_init
03 p_rwlock_wrlock
04 p_rwlock_rdlock
05 p_rwlock_unlock

01 cache_lookup(id) {
02 p...rdlock(...)
03 read from resource
04 p...unlock(...)
05 return result
06 }

CS241: synch. skills and the ability to build these! Along the way,
also learn to reason about, develop and fix multi-threaded code

9. ~~ Welcome to the Reader Writer Game Show! ~~

Contestant #1
p_mutex_t *readlock,*writelock
readlock=malloc(sizeof p_mutex_t)
writelock=malloc(sizeof p_mutex_t)
p_m_init(readlock,NULL)
P_m_init(writelock,NULL)

read() {
lock(readlock)
// do read
unlock(readlock)
}

write() {
lock(writelock)
lock(readlock)
// do writing
unlock(readlock)
unlock(writelock)
}

Is #1 a Solution? Problems?

Contestant #2
bool reading=0, writing=0
read() {
 while(writing) {}

 reading = true
 // do reading here
 reading = false
}

write() {
 while(reading||writing) {}

 writing = true
 // do writing here
 writing = false
}

Is #2 a Solution? Problems?

Contestant #3
read(){
 lock(&m)
 while (writing)
 cond_wait(cv,m)

 reading++

/* Read here! */

 reading--
 cond_signal(cv)
 unlock(&m)

write(){
 lock(&m)
 while (reading||writing)
 cond_wait(cv,m)

 writing++

/* Write here! */

 writing--;
 cond_signal(cv)
 unlock(&m)

Is #3 a Solution? Problems?

multiplereadinghappen

m

itsexclusive readers

tooslowsince
no sychronous

reading

