CS341 #19 Reader Writer & Deadlock - part 2

#1 Reader Writer (Writers priority implementation)

int writers; // # writer threads that want to enter the critical section (some or
all of these may be blocked)

int writing; // Number of threads that are actually writing inside the C.S. (can
only be zero or one - can you see why?)

int reading; // Number of threads that are reading inside the C.S.

int readers; // Number of threads that are or want to read

// if writing !=0 then reading must be zero (and vice versa)
reader () { writer () {
lock (&m) dowt want resddor’s 4o reacd i botwee lock (&m)
readers ++ » writers writers++
while (wnrter>o) while (yeoding o || writng >o)
cond wait(&r cv, &m) cond_waiE(&w_cv, &m)

Do we need to wait for
both 'writers' and 'writing'?

reading++ writing++
unlock (&m) unlock (&m)
we wamt Prase fwo
// perform reading here & (outiong, b be —=>// perform writing here
' l ;

lock (&m) I°5'w’“'4’ cAisive . lock (&m)

reading-- writing--

readers—- writers—--

wake up who here? (and how many) wake up who here? (and how many)
WW [,(,F INe- WVI.',-eV_ me'(/ UIP one WVI“'*V 2 wa V&MS
i Guriter-70 & veading =20) i (writer) § P—c—shya (Bw-c)

S s)'sha,[(4w-¢v) clse i (veadevs) P bisedeost (4 rcv)
unlock (&m) unlock (&m)
return result }
}
DEADLOCK

#2 Deadlock Definition:

#3 Coffman Conditions

Necessary? Y/N
Sufficient? Y/N
1
2
3

#4 Resource Allocation Graphs

Figure 1. Deadlock do not confuse it with dreadlocks.

Assume processes acquire locks in the order specified and release
resources only when finished. Create a resource allocation graph to
determine if and when there is deadlock.

When a process waits for a resource it will acquire an exclusive lock
on resource as soon as no other process has an exclusive lock. Assume
locks are fair (earliest waiting process obtains the lock).

Process 1 ("P1") requests (and
obtains) Resource A and then
Resource B
Process 2 requests C and then B.
o o o
Deadlock for P1? P27
Q2
Pl requests (and obtains?) A
P2 requests (and obtains?) B
P3 requests (and obtains?) C
P2 requests (and obtains?) C
P3 requests (and obtains?) A ® ® ®
Pl requests (and obtains?) C
Q3
Pl requests A then B
P2 requests C then B
P3 requests B
P4 requests C then B
o o o
Deadlock for P1? P2? P3? P47
Q4
Pl requests A then B
P2 requests C, D then B
P4 requests D
P3 requests B
Pl requests C
4 ® ® ® ®
Deadlock for P1? P2? P3? P47
Q5
Pl requests A and B
P2 requests C and D then B
P4 requests D
P3 requests B
Pl releases B (thus P2 acquires B)
Pl requests C
o o o o
Deadlock for P1? P2? P3? P47?

#5 What is the Banker's Algorithm?

#6 Deadlock Avoidance

#7 Linux/Windows strategy for deadlock avoidance?
#8 Acquiring resources in same rank

