
CS341 #19 Reader Writer & Deadlock - part 2

#1	Reader	Writer	(Writers	priority	implementation)	

int writers; // # writer threads that want to enter the critical section (some or
all of these may be blocked)
int writing; // Number of threads that are actually writing inside the C.S. (can
only be zero or one - can you see why?)
int reading; // Number of threads that are reading inside the C.S.
int readers; // Number of threads that are or want to read

// if writing !=0 then reading must be zero (and vice versa)

reader() {
 lock(&m)
 readers ++
 while (_________________________)
 cond_wait(&r_cv, &m)

 Do we need to wait for
 both 'writers' and 'writing'?

 reading++
 unlock(&m)

 // perform reading here

 lock(&m)
 reading--
 readers--
 wake up who here? (and how many)

 unlock(&m)
 return result
}

writer(){
 lock(&m)
 writers++
 while (________________________)
 cond_wait(&w_cv, &m)

 writing++
 unlock(&m)

 // perform writing here

 lock(&m)
 writing--
 writers--
 wake up who here? (and how many)

 unlock(&m)
}

DEADLOCK
#2	Deadlock	Definition:	
	
#3	Coffman	Conditions	
	
	 Necessary?	Y/N	
	 Sufficient?	Y/N	
1	
	
	
2	
	
	
3	
	
	
4	

water
twantreader'storeadinbetween
writers

reading ol writingso

wewantthesetwo
sectionstobe
logicallyexclusive

wakeup onewriter wake up onewaiter all readers
ifwriter o reading o

p c signalcawing
if writer p a signalcowcu
elseif readers p c broadast r cu

#4	Resource	Allocation	Graphs	

Figure 1. Deadlock do not confuse it with dreadlocks.
Assume processes acquire locks in the order specified and release
resources only when finished. Create a resource allocation graph to
determine if and when there is deadlock.

When a process waits for a resource it will acquire an exclusive lock
on resource as soon as no other process has an exclusive lock. Assume
locks are fair (earliest waiting process obtains the lock).

Q1
Process 1 ("P1") requests (and
obtains) Resource A and then
Resource B
Process 2 requests C and then B.

Deadlock for P1? P2?

Q2
P1 requests (and obtains?) A
P2 requests (and obtains?) B
P3 requests (and obtains?) C
P2 requests (and obtains?) C
P3 requests (and obtains?) A
P1 requests (and obtains?) C

Q3
P1 requests A then B
P2 requests C then B
P3 requests B
P4 requests C then B

Deadlock for P1? P2? P3? P4?

Q4
P1 requests A then B
P2 requests C, D then B
P4 requests D
P3 requests B
P1 requests C

Deadlock for P1? P2? P3? P4?

Q5
P1 requests A and B
P2 requests C and D then B
P4 requests D
P3 requests B
P1 releases B (thus P2 acquires B)
P1 requests C

Deadlock for P1? P2? P3? P4?

#5	What	is	the	Banker's	Algorithm?	
#6	Deadlock	Avoidance	
#7	Linux/Windows	strategy	for	deadlock	avoidance?		
#8	Acquiring	resources	in	same	rank	

• 	 • 	

• 	 • 	 • 	

• 	

• 	 • 	 • 	

• 	 • 	 • 	 • 	

• 	 • 	 • 	 • 	

