
CS341#28 – inodes, permissions, modern fs
	
Reminder:	Model	disk	layout	for	an	ext2	filesystem.	Inodes	on	disk	
have	pointers	to	~10	direct	disk	block	entries,	one	indirect,	one	
double	indirect,	one	triple	indirect	block.	
	

		
	
For	ext2	with	4KB	blocks	and	32	bit	addressing.	What	is	the	
maximum	supported	disk	size	in	bytes?	
	
Each	inode	entry	is	128	bytes	and	during	formatting	64KB	is	
reserved	for	inode	array.	How	many	files	and	directories	can	you	
create?	
	
For	ext2	filesystem	with	4KB	blocks	and	32	bit	addressing	,	how	large	
can	a	file	be	before	a	triple	indirect	block	is	required?	
	
Big	idea:	Forget	names	of	files:	The	'inode'	is	the	file.			
	
What does the following do?

char mystery[PATH_MAX+1];
if (getcwd(mystery,PATH_MAX)) puts(mystery);?

How do we implement a directory? (spot the mistake)
DIR* dirp = opendir(".");
while ((dp = readdir(dirp)) != NULL) {
 puts(dp->d_name);
 if (!strcmp(dp->d_name, name)) {
 return 1; /* Found */
 }
}
closedir(dirp);
return 0; /* Not Found */
	
	

How	can	I	find	the	inode	number	of	a	file?	
	
How	do	I	find	out	meta-	file	information?	
	
 int stat(const char *path, struct stat *buf);
 int fstat(int fd, struct stat *buf);
 int lstat(const char *path, struct stat *buf);
	
struct stat {
 dev_t st_dev; ID of device containing file
 ino_t st_ino; inode number
 mode_t st_mode; protection & other info
 nlink_t st_nlink; number of hard links
 uid_t st_uid; user ID of owner
 gid_t st_gid; group ID of owner
 dev_t st_rdev; device ID (if special file)
 off_t st_size; total size, in bytes
 blksize_t st_blksize; blocksize for file system
 blkcnt_t st_blocks; number of 512B blocks allocated
 time_t st_atime; time of last access
 time_t st_mtime; time of last modification
 time_t st_ctime; time of last status change
};
	
Users	are	integers!?	
st_mtime	vs	st_ctime?	
	
mymake.c	;	compile	iff	source	code	is	newer	or	target	does	not	exist?	

int s_ok = stat("prog.c", &src);	
int t_ok = stat("a.out", &tgt);

double delta = difftime(________, __________)
// -ve if t1 before t2

if(__) {
 puts("Compiling");
 system("gcc prog.c"); // = fork, exec shell, wait
} else { puts("nothing to do"); }	

whocanrearwritelexecatecrux

an x 232 5 B 10TB D untom.t

Butnotenoughtoday

210 27 29filesand directories content

mode

sina.EEEIreadeuecamntpatna
mysteryandmintinoutPattmaxisthelimit

n
Tosediridirps

Tok011sokoildelta o

anxiousness
indominant

E

Does	the	inode	contain	the	filename	[101010	points]?	
	
How	can	I	have	the	same	file	appear	in	two	different	places	in	my	file	
system?	
(From	code?	Command?)	
Reference	counting?	
	
rm	=	unlinking?	
	
Changing	File	Permisssions?	
chmod	644	/bin/sandwhich	
chmod	755	/bin/sandwhich	
chmod	ugo-w	/bin/sandwhich	
chmod	o-rx	/bin/sandwhich	
	
From	code	...	chmod(const	char	*path,	mode_t	mode);	
	
What	are	the	two	"set	uid	bits"	?	
set-user-ID-on-execution/set-group-ID-on-execution	
	
Why	are	they	useful?	What	common	linux	program	uses	this	feature?	
	
	
	
	
ext3:	Journaling.	Able	to	rollback	to	a	known	good	state.	
	
ext4:	Performance.	Encryption.	Better	limits	(e.g.	#files	per	dir)	
Case	study:		ext4	has	the		"delayed	data-write	problem"	
	
fd=open("file", O_TRUNC); write(fd, data); close(fd);

fd=open("file.tmp");
write(fd, data);
close(fd);
rename("file.tmp", "file"); // Very happy in ext3
	
//	but	upgrading	to	ext4	:	the	rename	could	be	completed	before	
content	is	written	to	disk	surface!	
	

	
ZFS	
1.1	Data	integrity	
1.2	RAID	
1.3	Storage	pools	
1.4	ZFS	cache:	ARC	(L1),	L2ARC,	ZIL	
1.5	Gigantic	Capacity	(128bit	model)	
1.6	Copy-on-write	transactional	model	
1.7	Snapshots	and	clones	
1.8	Sending	and	receiving	snapshots	
1.9	Dynamic	striping	
1.10	Variable	block	sizes	
1.11	Lightweight	filesystem	creation	
1.12	Cache	management	
1.13	Adaptive	endianness	
1.14	Deduplication	
1.15	Encryption	
	
BtrFS	
Extent	based	file	storage	
2^64	byte	==	16	EiB	maximum	file	size	(practical	limit	is	8	EiB	due	to	Linux	VFS)	
Space-efficient	packing	of	small	files	
Space-efficient	indexed	directories	
Dynamic	inode	allocation	
Writable	snapshots,	read-only	snapshots	
Subvolumes	(separate	internal	filesystem	roots)	
Checksums	on	data	and	metadata	(crc32c)	
Compression	(zlib	and	LZO)	
Integrated	multiple	device	support	
			File	Striping,	File	Mirroring,	File	Striping+Mirroring,	Striping	with	Single	and	Dual	
Parity	implementations		
SSD	(Flash	storage)	awareness	(TRIM/Discard	for	reporting	free	blocks	for	reuse)	
and	optimizations	
Efficient	Incremental	Backup	
Background	scrub	process	for	finding	and	fixing	errors	on	files	with	redundant	
copies	
Online	filesystem	defragmentation	
Offline	filesystem	check	
In-place	conversion	of	existing	ext3/4	file	systems	
Seed	devices.	Create	a	(readonly)	filesystem	that	acts	as	a	template	to	seed	other	
Btrfs	filesystems.	The	original	filesystem	and	devices	are	included	as	a	readonly	
starting	point	for	the	new	filesystem.	Using	copy	on	write,	all	modifications	are	
stored	on	different	devices;	the	original	is	unchanged.	
Subvolume-aware	quota	support	
Send/receive	of	subvolume	changes	
Efficient	incremental	filesystem	mirroring		
Batch,	or	out-of-band	deduplication	(happens	after	writes,	not	during)	

turnsoutthattheyhavediffnamebutsameino

increaseseneinubyone rmoneoftanwinaninnand stamina

onlyinoursametilesystemtho usexlinnpas

jg at 4 2
r u x

usersmi

