CS341#28 - inodes, permissions, modern fs

Reminder: Model disk layout for an ext2 filesystem. Inodes on disk
have pointers to ~10 direct disk block entries, one indirect, one
double indirect, one triple indirect block.

superblock inodes

File and directory data blocks

“ _ |
}‘L X 252- -)/lkg = /6 (B (,‘(
For ext2 with 4KB blocks and 32 bit addressing. What is the
maximum supported disk size in bytes? (Gt ot edovgly 75%

Each inode entry is 128 bytes and during formatting 64KB is
reserved for inoge array. How many files and directories can you
create? Y / 272 27 Ples gl donctovies

For ext2 filesystem with 4KB blocks and 32 bit addressing , how large
can a file be before a triple indirect block is required?

How can I find the inode number of a file?

How do I find out meta- file information?

int stat(const char *path, struct stat *buf);
int fstat (int fd, struct stat *buf);
int lstat (const char *path, struct stat *buf);

struct stat {

dev t st _dev; ID of device containing file
ino t st ino; inode numbeggwb(%:@¢AmkﬂnﬁM?
mode t st mode; protection & other info (r“w

nlink t (number of hard Iinkg e ref e !
uid t st uid; user ID of owner

gid t st gid; group ID of owner
dev t st _rdev; device ID (if special file)
off t st size; total size, in bytes

blksize t st blksize; blocksize for file system
blkcnt t st blocks; number of 512B blocks allocated

time t st atime; time of last access
time t st mtime; time of last modificationl(coneat)
time t

st ctime; time of last status change@TQ)

}i e

Users are integers!?
st_mtime vs st_ctime?

My cat -2
Big idea: Forget names of files: The 'inode' is the filel "**¢ "%]
/
e Ly Llongne

What does the following do?

char mystery[PATH MAX+1];
if (getcwd(mystery, PATH MAX)) puts(mystery);?

wod e comedt Pk 35 vapsteny” ool prirt in ot PATH-AUX is The Amit

How do we implement a directory? (spot the mistake)
DIR* dirp = opendir (".");

while ((dp = readdir (dirp)) != NULL) { dp > ol-nome
puts (dp->d_name) ; oép o d_igp (0 mumber)
if (!strcmp(dp->d name, name)) {

return 1; /* Found */N\ Gedir (irp)
} fjf~ '

}

closedir (dirp) ;

return 0; /* Not Found */

o J— Ak X D24X1224 =4GR
in diet | —— in dote divet =
i frox g = 4B
in the <ingle widired

HB/4B = 1o¥ e-tics

mymake.c ; compile iff source code is newer or target does not exist?

int s ok = stat("prog.c", &src);

int t ok = stat("a.out", &tgt);
T O F when anowt dhesat exist

double delta = difftime ("¢ strrhme Yot st_mtime)

// -ve if tl before t2

£ (ook £0 || sokpoll debts 20) o
puts ("Compiling"™) ;
system("gcc prog.c"); // = fork, exec shell, wait

} else { puts("nothing to do"); }

Does the inode contain the filename [101°” points]?

How can I have the same file appear in two different places in my file
system? In filel txt Aile2 Fxt

(From code? Command?)m) Lot nae bat Sowme ind
. 2 vas Gut 7#11’17" 5171%4— “ve
Reference counting? T Shoves At g 00 i s

Pm e o Hoew will “Grlioe " prol ~— 5 bl
rm = unlinking?

ZFS

L . /i =7 J
Oty 7 AW Stne XHE Sggee~ Tho (s X ftaw Fe)

Changing File Permisssions? __~ oct 4 2 |

chmod (’ﬂj@//bin/sandwhich rwoR
chmod 755 /bin/sandwhich
chmod ugo-w /bin/sandwhich
chmod o-rx /bin/sandwhich

> Usgop =
B

From code ... chmod(const char *path, mode_t mode);

What are the two "set uid bits" ?
set-user-ID-on-execution/set-group-ID-on-execution

Why are they useful? What common linux program uses this feature?

1.1 Data integrity

1.2 RAID

1.3 Storage pools

1.4 ZFS cache: ARC (L1), L2ARC, ZIL
1.5 Gigantic Capacity (128bit model)
1.6 Copy-on-write transactional model
1.7 Snapshots and clones

1.8 Sending and receiving snapshots
1.9 Dynamic striping

1.10 Variable block sizes

1.11 Lightweight filesystem creation
1.12 Cache management

1.13 Adaptive endianness

1.14 Deduplication

1.15 Encryption

BtrFS

ext3: Journaling. Able to rollback to a known good state.

ext4: Performance. Encryption. Better limits (e.g. #files per dir)
Case study: ext4 has the "delayed data-write problem"

fd=open ("file", O TRUNC); write(fd, data); close(fd);

fd=open ("file.tmp");

write (fd, data);

close (f£d) ;

rename ("file.tmp", "file"); // Very happy in ext3

// but upgrading to ext4 : the rename could be completed before
content is written to disk surface!

Extent based file storage
2764 byte == 16 EiB maximum file size (practical limit is 8 EiB due to Linux VFS)
Space-efficient packing of small files
Space-efficient indexed directories
Dynamic inode allocation
Writable snapshots, read-only snapshots
Subvolumes (separate internal filesystem roots)
Checksums on data and metadata (crc32c)
Compression (zlib and LZ0O)
Integrated multiple device support
File Striping, File Mirroring, File Striping+Mirroring, Striping with Single and Dual
Parity implementations
SSD (Flash storage) awareness (TRIM/Discard for reporting free blocks for reuse)
and optimizations
Efficient Incremental Backup
Background scrub process for finding and fixing errors on files with redundant
copies
Online filesystem defragmentation
Offline filesystem check
In-place conversion of existing ext3/4 file systems
Seed devices. Create a (readonly) filesystem that acts as a template to seed other
Btrfs filesystems. The original filesystem and devices are included as a readonly
starting point for the new filesystem. Using copy on write, all modifications are
stored on different devices; the original is unchanged.
Subvolume-aware quota support
Send/receive of subvolume changes
Efficient incremental filesystem mirroring
Batch, or out-of-band deduplication (happens after writes, not during)

