
CS341 #33– Epoll. Server & Port know-how. Web server.
	
1.	Review:	What	is	htons?	ntohs?	Why	do	we	need	them?		What	do	their	names	stand	for?	

What	are	the	"four	calls"	to	set	up	the	server?	What	is	their	order?	And	what	is	their	purpose?	
	
	
	
Quick	comment:	How	to	use	freeaddrinfo	struct	addrinfo	hints,	*result;	
memset	etc	
getaddrinfo(addr_string,	port_string,	&hints,	&result);	
freeaddrinfo(result);	
	

	
2.	What	is	port	hijacking?	What	steps	does	the	O/S	take	to	prevent	port	hijacking?	
	
	
Writing	high-performance	servers;	handling	1000s	of	concurrent	sockets	The	select		–		poll	–	epoll	story		
	
	
	
	
	
	
Differences	between	select	and	epoll?	When	would	you	use	select?	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
3.	Useful	Socket/Port	Know-how	for	developers	
1)	When	I	restart	my	program	how	can	I	reuse	the	same	port	immediately?	
	
	
2)	Creating	a	server	that	runs	on	an	arbitrary	port?	
getaddrinfo(NULL,	"0",	&hints,	&result);			//	ANY	Port	
Later...	
struct	sockaddr_in	sin;	
socklen_t	socklen	=	sizeof(sin);	
if	(getsockname(sock_fd,	(struct	sockaddr	*)&sin,	&socklen)	==	0)			printf("port	%d\n",	sin.sin_port);			
//	Hint:	Something	is	missing	above	here	

server socket bind listen accept

client sonet connect
shutdown cosec

select isportable

epoll forthewin Linux

epoll m edgetriggered
onlynewstuff

2 leveltriggered warningallthetime

4
usethis

setsocketoption folSOLSOCKETSOREUSEADDR Ropt

ntohs

	
4.	Client	IP	address?	
struct	sockaddr_in	client_info;	
int	size	=	sizeof(client_info);	
int	client_fd	=	accept(sock_fd,	(struct	sockaddr*)	&client_info,	&size);		
			
	char	*connected_ip=	inet_ntoa(client_info.sin_addr);		//	Does	this	look	thread-safe	to	you?	
	int	port	=	ntohs(client_info.sin_port);	
	printf("Client	%s	port	%d\n",	connected_ip,	port);	
	
5.	Build	a	non-compliant	web	server!	
Send	some	text	
read(client_fd,	buffer,	...);	
	
dprintf(client_fd,"HTTP/1.0	200	OK\r\n"	
									"Content-Type:	text/html\r\n"	
									"Connection:	close\r\n\r\n");	
	
dprintf(client_fd,"<html><body><h1>Hello!");	
dprintf(client_fd,"</h1></body></html>");	
	
	
shutdown(client_fd	,	SHUT_RDWR)	
close(client_fd);	
	
	

Send	a	picture	
read(client_fd,	buffer,	...);	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Epoll	notes	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	
select:		
old,	cross-platform	-	Even	available	on	tiny	embedded	linux	systems	
Requires	simple	but	O(N)	linear	scan-	so	does	not	scale	well	
Hard-limit	on	number	of	selectors	
<1ms	timeout	
	
	
poll		
Also	O(N)	scan	
OSX	support	
Good	for	short-lived	sockets	or	100s	of	sockets	
can	detect	closed	sockets	
1ms+	timeout	
Cannot	close	sockets	during	poll	
event	based	
	
	
epoll	–	newest.	linux	specific;	not	Macosx	(use	kqueue	instead)	
good	for	large	(1000s)	of	long-lived	sockets	per	thread	
long-lived	=	multi	I/O	requests	per	connection	
1ms+	timeout	
event	based	
Each	accept'ed	call	needs	to	be	added	to	the	set	
	
..	what	if	I	have	100s	of	long-lived	sockets	on	Linux?	poll	vs	epoll?	Ans:	There	may	not	be	a	significant	
difference	between	either	approach.	Try	both	and	benchmark.	
	
An	excellent	in-depth	article	about	the	differences	between	select,	poll	and	epoll:	
	
http://www.ulduzsoft.com/2014/01/select-poll-epoll-practical-difference-for-system-architects/	
	
	
stat	
char*buf	=	malloc(st.size);	
fread(buf,1,st.size,file);	
									
dprintf(client_fd,"HTTP/1.1	200	OK\r\nContent-Type:	image/jpeg\r\n");	
dprintf(client_fd,"Content-Length:	%ld\r\n\r\n",size);	
	
write(client_fd,	buf,	size);	
fclose(file);	
free(buf);	
	
	 	
	
	

