Randomized Algo: Min Cut

def
$$G = (V, E)$$
 undirected
A cut $V = A \cup B$, $A , B \neq \emptyset$.
The corposity $|C| = |\xi e : (U, V), u \in A, v \in B^{2}|$
The Globed min cut problem V.S. (S,t) min cut problem.?
Prop : Let $G = (V, E)$ undirected. $G' = (V', E')$ be corpositeted directed graph.
 $E' = \xi e, -e, e \in E^{2}_{S}$ and corposity $C = 1$, $V' = V$
 $\frac{G}{u} \xrightarrow{V} \Longrightarrow \xrightarrow{V'}_{V}$
Any. cut $C = V = A \cup B$, $|C| = |C|$
 $g' = \frac{G}{v} \xrightarrow{V} = \frac{G'}{v}$

prop: Global mineut in O(n2n3) time.

Complexity: n times of Orlin's Algo,) O(nm)

Correctness:
(1) claim: outputs is a valid cut.
$$\implies$$
 by Orlin
(2) claim: C= AUB is the global minant in G.

-

Fast: Contraction Algo can be implemented in
$$O(n^2)$$

Q: Success probability?
prop: RC returns a global minacut C is $\frac{1}{\binom{n}{2}}$
Ruck: There are 2^n-2 possible cuts $t=n^2$
 $\frac{1}{trivel}$ cuts $\xi(S=\phi, T=V), (S=V, T=\phi)$

Q How can RC Beil? prop: C = AUB output iff no edge between A and B never get contracted. Pf: (n <= ¬) if e=(u,v), u∈A, v∈B is contracted. then e is deleted. Also, the final cut is all edges between (S1, S2) ⇒ (S1, S2) ≠ (A, B)

$$\begin{array}{l} ((=) & \text{By induction}: A = T_1 \cup \cdots \cup T_L, B = T_1' \cup \cdots \cup T_L' \\ & \text{Next contraction } e:(u,v) \Rightarrow & \text{f} e between Ti, T_j' \\ & \Rightarrow A \cup B \text{ is a valid cut in contracted multigraph.} \\ \hline e between Ti', T_j' \\ \hline \Rightarrow A \cup B \text{ is a valid cut in contracted multigraph.} \\ \hline e between Ti', T_j' \\ \hline \Rightarrow A \cup B \text{ is a valid cut in contracted multigraph.} \\ \hline e between Ti', T_j' \\ \hline \Rightarrow A \cup B \text{ is a valid cut C is contracted multigraph.} \\ \hline e between Ti', T_j' \\ \hline$$

Cor
$$\Pr_{r}[N_{0}]$$
 edge is contracted in first round $\Im \ge 1 - \frac{1C1}{1C1\cdot n} = 1 - \frac{2}{n}$
In the decae round
prop $\bigotimes_{j} = event \text{ that no edge in } C$ is contracted in round j unlikely to the d .
 $\Pr_{i}\{\bigotimes_{j}^{2} \ge 1 - \frac{2}{n} \, . \, \Pr_{i}\{\bigotimes_{j+1}^{2} \mid \bigotimes_{i}^{2} \land \bigotimes_{i}^{2} \land \bigotimes_{i}^{2} \end{Bmatrix} \ge 1 - \frac{2}{n-j}$
Pf No edge of C contracted in these j zound
 \Longrightarrow multigraph H
 $\cdot \text{ respects partition } A, B, \{A = T_{i} \cup \cdots \cup T_{d} \mid B = T_{i}' \cup \cdots \cup T_{d} \mid B = T_{i}' \cup \cdots \cup T_{d}''}$
 $\cdot \text{ howe } h - j \text{ vertices } (\text{ each time } - = 1$
 \Longrightarrow A/B is a valid cut with value $|C|$
 $Claim: any cut in H - respectent a cut in G
 $\text{ or } H \text{ has minimized value } |C|$
 \Rightarrow H has $\ge |C| \cdot \frac{(n-1)}{2} \text{ edges } \Longrightarrow$ $\Pr_{i}^{2} \cdots \stackrel{2}{\rightarrow} 2 \cdot 1 - \frac{1C1}{1C1 \cdot \frac{(n-1)}{2}} = 1 - \frac{2}{n-j}$$

Cor
$$\Pr\{\frac{1}{n} \text{ or edge in } \mathbb{C} \text{ is even contracted } \frac{2}{3} \ge \frac{1}{\binom{n}{2}}$$
 Con this be shown
using combinatories?

Pf: $\Pr\{\frac{2}{n} \cap \frac{2}{2}, \cap \cdots \cap \frac{2}{n-2}\}$
 $= \Pr\{\frac{2}{n} \{\frac{2}{n}, \cap \frac{2}{2}, \mathbb{C}, \frac{2}{n}, \frac{2}{n}, \Pr\{\frac{2}{2}, \frac{2}{n}, \frac{2}{n}, \frac{2}{n-2}, \frac{2$

Cor
$$O(n^{2}lgn)$$
 random contraction will produce mincut w/ high probability.
 $Pf: k: \binom{n}{2}lgn \Rightarrow (1-\frac{1}{\binom{n}{2}})^{k} = (1-\frac{1}{\binom{n}{2}})^{\binom{n}{2}lgn} \leq (e^{-\frac{1}{\binom{n}{2}}})^{\binom{n}{2}lgn} = e^{-lgn} = \frac{1}{n}$

 $ggnh \quad |tz \in e^{2}$

Thun Global minut in O(14lgn) steps w/ high probability.

Shetch:
$$O(n^2 lgn)$$
 random contraction.
 $O(n^2)$