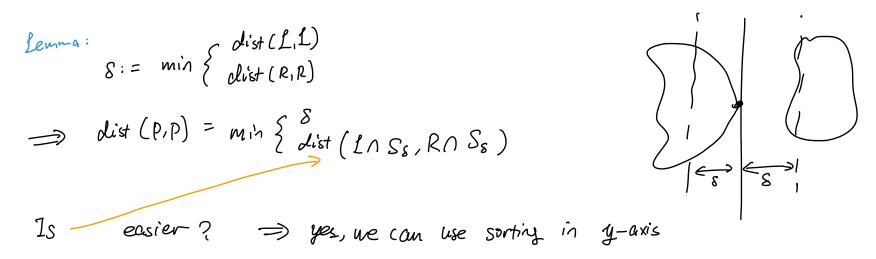
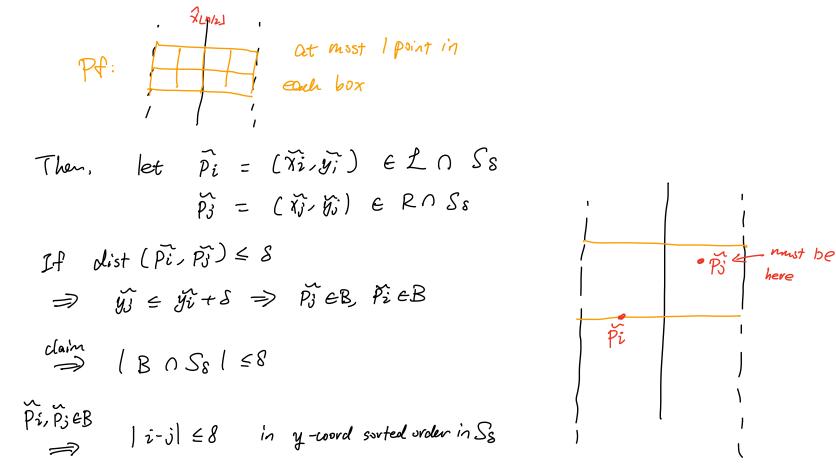
Divide & Conquer

Q: Cost & manipulating integers


A: D Modern $a \in b \cdot c$ as primitive operation D Multiplication can be done $O(n^{(sg_{2}3)})$ time For this course, these gives two options for cost models: D n-bit arithmetic operations as unit op. D n-bit arithmetic ops using $n^{\Theta(i)}$ steps. (tedions) B O(log n) bit integer arithmetic.

Gonvention: for problems on integers, assume O(logn) bits. ? algo can use O(logn) avithmetics as unit cost.

Description:


Assume
$$x_i$$
's and y_i 's are disjoint
Proposition in $O(n^2)$
 $adgo: \min_{x,j} dist(P_i, P_j)^2$
 $complexity: (4) pairs $\rightarrow O(n^2)$
Prop: one-olimentional in $O(nlogn)$
Pf: idea: sorting.
 $adgo: input: x_1, \dots, x_n$
 $sort to: x_i \in \dots \in T_n$
 $- output: min$$

det:
$$S_8 = \{ P_7 : \hat{\chi}_{L_2} - S \leq \chi_1 \leq \hat{\chi}_{L_2} + S \}$$
 $S - margin median strip of P$

prop: Sort Ss by y-coord.

$$if \quad p_i \in L \cap Ss$$
, then:
 $p_j \in R \cap Ss$
 $if \quad olist(\tilde{p}_i, \tilde{p}_j) \leq 8$, then $\boxed{12-j} \leq 8$
 $onsturt!$
 $Pf: \quad claim: \quad comp \quad f_2 \times f_2 \quad box \quad contains \quad \leq 1 \quad points \quad from \ L$
 $Pf: \quad g \quad f_2 \quad box, \quad if \quad contains \quad two \quad points \quad p.g \in L, \quad then \quad S < \frac{S}{\sqrt{2}} \rightarrow \quad contradiction.$
 $claim: \quad any \quad 28 \times 8 \quad box \quad B \quad contexted around \quad \tilde{X}_{LBJ} \quad contains \quad \leq 8 \quad points$

Algo for 2D closest pair in $O(n(lgn)^2)$:

- If $|P| \leq 3$, brute force O(1)
- Sort P by x-courd and get Px O(nlogn)
- Partition P into Land R (find median and classify all points) D(n)

- Recursively compute
$$\begin{cases} dist(L,L) & T(\frac{th}{2}) \\ dist(R,R) & T(\frac{th}{2}) \end{cases}$$

- Let $S = min st$ $O(1)$
- Compute Ss $O(n)$ by check if x -coord of Pi is in range
- sort Ss by g -coord $O(n(gn))$
- compute closest pair in Ss $O(n)$
- Output $min \begin{cases} s \\ s \end{cases}$ $O(1)$
Complexity: $T(\alpha) \leq 2T(\frac{th}{2}) + O(n(gn)) \leq O(n(gn)^2)$

Thu: 2D closest pair in
$$O(ulegn)$$

idea: sorting in every recursive call is wastetul.
 \rightarrow instead, Sort by x and y coord once in the beginning.
Then, in each recursion, we can construct $Lr_{x}Ly$, $R_{x}Ry$ in $O(n)$ ($\int x$ and R_{x} are easy as we have
 $reclian$. Then, Lg and R_{y} can
be constructed during partition.)
Complexity: $T(u) \leq O(nlogn) + R(n)$
 $R(n) \leq 2R(\frac{n}{2}) + O(u) \leq O(nlogn)$

Remark: can be done in O(n) using randomization)