Linear Program

4

Q what do opt looks like?

Q Is opt unique ? Finitely many? Infinitely man?

Q LP on integers ? Need infinite precision?

Crowner's Rule.

Defining a vertex of publication:
def
$$P = \{x : Ax \le b\}$$
, $A \in \mathbb{R}^{mun}$, $b \in \mathbb{R}^{n}$
Given $x \in P$, an $(Ax)_{i} \le b_{i}$ is tight if $(Ax)_{i} = b_{i}$
A vertex of P is point $x^{*} \in P$ where $\exists S \subseteq [m]$
 $= (S) = n$
 $= (Ax^{*})_{i} = b_{i}$ $\forall i \in S$
 $= det (A|_{S}) \neq o \Rightarrow x^{*}$ is unique.

Given TT = Max < C.X) Rilgo: Try all vertices St Ax <b x>D x<B

$$\binom{m+2n}{n}$$

$$\int_{1}^{\infty} \int_{1}^{\infty} \int_{1$$

1

N = ()