$$f = flow in 6, S = \{rv: s \Rightarrow v in 6, t\}$$
Then following, equiv:
(1) G^{t} has no $sn \Rightarrow t$ path
(2) $C = (S, v \mid S)$ is an (s,t) -cut with $[C] = t^{2}]$
(3) f max flow.

Z graph, FF rung in SZ(F)

flow chart:

Residual graphs

ト

Ø

By induction

Prop Given flow
$$f$$
 in G.
 $|f| = |f^*| - B$, can find new ther in $O(mB)$
for: manflar in $G(m \cdot |f^*|)$ time.
good because $|f^*| \leq poly(n,m)$.
How its be smart for choosing accommuting path?
idea: mant is build lange values for poth
 $clef: f flow in Gr, \Delta \in IN_{70}$, the Δ -buttleneed residual graph G^{BA}
is $V^{BA} = V$, $E^{BA} = \int e \in E^{R}$, $(C^{P})e = \Delta_{1}^{2}$
 $(C^{f_{10}})e = (C^{P})e$, $e \in E^{R,\Delta}$
 e_{2} ;
 $G: \frac{30/32}{30}$, $G^{f}: e^{2}$, $G^{f_{10}}$

lemma:
$$G^{f,1} = G^{f}$$

prop: Swot paths in $G^{f,\delta}$ -are snot path in G^{f} .
- are according paths
w/ value z Δ

idea: Stort with large &, note smaller over time.

Haseva

HASEVA Haseva 4 b < d & f g h r

$$d: \int J = 0 = 0 - 4 + 5 = (1)$$

$$d: (1)$$

$$g = 3 = 3 - 22 + 5 = -14 - 2$$

$$g = 3, 1 = 1 - 4 + 5 = 2$$

$$f(x_{iy}) = b_{iyz} 4$$

$$if 2 (4 h)$$

$$(f(a, b))$$

$$for a \rightarrow for b \rightarrow ()$$

$$for a \rightarrow for b \rightarrow ()$$

$$for (x_{iz}) \rightarrow ()$$

