NP

Déviously,
$$P \leq NP$$
 (av bvc), (ravrbvc
Question: $P = NP$?
 $NP = \xi$ problems that admit a poly size certificate (proot) and a
poly time verifier for all "yes" input ξ

def Reduction: Given two decision problem $A \notin B$, a reduction is a mapping from all instances I of A to I' of B s.t. $A(I) = YES \iff B(I') = YES$

def polytime reduction.
Given two decision protlems A and B. poly reduction is a
poly time algo that maps an I of A to can I' of B Sit.

$$A(I) = YES \iff B(I') = YES.$$

We	say	A≤B		Cryto
----	-----	-----	--	-------

598

Claim Griven
$$A \leq_{P}B$$
, then a polytime B implies a polytime A .
Pf: Consider reduction R from A to B
 R in poly time \Rightarrow $R_{AB}(III) \leq Poly(II)$
write out most $R_{AB}(III)$ bits \Rightarrow $II'I \leq R_{AB}(III) \leq Poly(III)$
 $I \rightarrow R$
 $R = I' \Rightarrow algo A - B \Rightarrow No$.
 $R_{AB}(I) \leq Poly(II)$ $Poly(II) \geq Poly(II)$
 $Poly time algo$.

Reduction is transitive, $A \leq_{p} B$, $B \leq_{p} C \Rightarrow A \leq_{p} C$

Problem C is NP-hand, B≤PC≤PA => B≤PA (transitivity)

Cook-Levin Theorem S'AT is NP-complete

3-SAT : regation. optional. Given variables X1, --- Xn clauses C_{1}, \ldots, C_{m} , $C_{2} = (X_{e_1} \vee X_{e_2} \vee \neg X_{e_3})$ Find an assignment of {T,F} to all X1, Xn sit, all C1, Cn satisfied. Thin 3SAT is NP-complete (SAT = 3SAT) Pf: God: Find an algo that converts I of SAT to I' of 3SAT s.t. I is satisfiable (=> I' is satisfiable. Replace OR, AND, NOT gates with clauses that has 3 vars. Idea: ⇒ (āvbvc)∧ (avē)∧ (avē) a= bvc => (avbvc) / (avb) / (arc) A= 51C > (avb)∧ (āv6) a= 5

Independent Set Problem.
Given G=(V,E),
$$|V|=n$$
, $|E|=m$, constant k , is there an independent set
 $S \subseteq V$ sit $|S|=k$ and no two vertices is S share an edge.

This is NP since we have polytime verifier
$$\Rightarrow$$
 we can be runny point or the answer in poly time non-deterministically?
Show this is NP-hand: SAT=p \leq CLIQUE \leq p IND-SET.
 \uparrow

Vertex Cover Problem.

(1) Given G = (V,E). (2) SEV is a vertex cover iff $\forall e=(u,v) \in E$, either us or ves. Q = S w/ |S|=k ? This is NP-hand: IND-SET = Vertex Cover. Claim: G hers an independent set of size k ⇐ G has a vertex cover of size n-k. S is a vertex cover \rightleftharpoons V\S is an ind-set. Ξ Pf: ⇒ Assume VIS is not can IS, then I us, VEVIS sit. (us, v) EE But (Up, V) is not in vertex cover. Contradiction. ← Assume S is not a vertex cover, then Zu, V & S, but (u, v) ∈ E. U, VEVIS VIS not ind-set.

Integer LP

 $Ax = b \quad x \in \mathbb{R}^{n}$ $Xi \quad is \quad integer \quad \forall i \in [n]$ $Clain: \quad IIP \quad is \quad NP-hand.$ $Vertex-cover \leq p \quad IIP \quad ?$ $\forall v \in G, \quad y_{v} = \begin{cases} 1 & if \quad v \in S \\ 0 & 0.W. \end{cases}$ $\forall (u,v) \in E, \quad y_{n} + y_{v} \geq 1 \\ \forall v \in V \quad y_{v} \in S \geq 0.1 \end{cases} \quad constraints.$ $\begin{cases} y_{v} = k \\ y_{v} = k \end{cases}$

Structure: S > level 1 > level 2 > ... > level n > t

Claim I of 3SAT has an assignment to G has hamiltonian cycle.

3D matching det Let X, Y, Z be finite sets