

Proof of the Classification of Finitely Generated Abelian Groups U

finite Abelian group.

$$
G = \langle a_1, ..., a_n \rangle
$$
 - finitely generated group
\n $N \le G \rightarrow G/N = \langle a_1 N, ..., a_n N \rangle \rightarrow$ *Write as words*
\n \Rightarrow quotients of f. gen groups are finitely generated.
\nFact: If $a_n \in N$, then $G/N = \langle a_1 N, ..., a_{n-1} N \rangle$
\n $\lim_{\text{form} away}$ the identity
\n $a_n N^2 \in N$
\n $\lim_{\text{form} of the elements of the product is a function of the product.}$

Proof of the Classification of Finitely Generated Abelian Groups

If $H \leqslant G$ -f.gen

is *H* also f.gen?

NO it does not have to be f.gen. **Prop:** \leq **If** *G* is f.gen and abelian, then every subgroup $H \leq G$ is also f.gen.

 T_{max}

Proof of the Classification of Finitely Generated Abelian Groups

Lemma: If *H*-(abelian) group, $N \leq H$ (normal) subgroup If *N* and H/N are f.gen \Rightarrow *H* is f.gen. $Proof: Suppose **N** = \mathbb{Z}\{x_1, ..., x_m\}$ </u> π : $\bm{H} \rightarrow$ \bm{H}/\bm{N} $H/N = \mathbb{Z}{\{\bar{y}_1, ..., \bar{y}_n\}}$ $\pi(y_i) = \bar{y}_i$ not really regerived $58x_1 \rightarrow x_2$ [just a

11 motortion \int
cosets of N

<u>Pick.</u> For each \bar{y}_i pick $y_i \in H$ such that $\bar{y}_i = y_i + M$

Proof of the Classification of Finitely Generated Abelian Groups

Claim:	$H = \mathbb{Z}\{x_1, ..., x_m, y_1, ..., y_n\}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	
Suppose:	$u \in H$				
Consider $v := \pi(u) = b_1\bar{y}_1 + ... + b_n\bar{y}_n \in H/N$ for some $b_1 \in \mathbb{Z}$					
Define:	$\hat{v} := 1y_1 + ... + b_py_n \in H$;	$\pi(\hat{v}) = v$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{1}{100}$
Have:	$\pi(u) = v = \pi(\hat{v}) \Rightarrow \pi(u - \hat{v}) = 0 \Rightarrow u - \hat{v} \in N$				
so $u - \hat{v} = a_1x_1 + ... + a_mx_m$ for some $a_1 \in \mathbb{Z}$					
$\Rightarrow u = \sum a_i x_i + \sum b_j y_j \Rightarrow \underline{d} \underline{d} \underline{d} \underline{d}$					
$\frac{1}{100}$	$\frac{1}{100}$				

Proving The Subgroup H Is Finitely Generated

Pf. of thm:
$$
G = \mathbb{Z}\{a_1, ..., a_n\}
$$
, $H \leq G$
\nUse induction an $n = \text{size of a generating set of } G$
\nBase case: $n = 0$, $G = \mathbb{Z}\{\} = \{0\}$
\n $n = 1$, $G = \mathbb{Z}\{a\}$
\nwe shared $\neq H$ is cyclic
\n $\int_{\text{locfree}}^{\text{proved}}$
\n $\int_{\text{locfree}}^{\text{flow}} (0,1)^{\frac{1}{\sqrt{3}}}$

Induction Step

Consequence of Proof

Studying the Homomorphism from Z*ⁿ* to Z*^m*

<u>Observe:</u> $\boldsymbol{A} \in \text{Mat}_{m \times n}(\mathbb{Z})$, define $L_{\mathbf{A}} : \mathbb{Z}^n \to \mathbb{Z}^m$ by $\mathbf{A} = (a_{ij}), a_{ij} \in \mathbb{Z}$ $L_{\mathbf{A}}((c_1, ..., c_n)) := (\sum_{j=1}^n a_{1j}c_j, \sum_{j=1}^n a_{2j}c_j, ..., \sum_{j=1}^n a_{mj}c_j)$ $c_i \in \mathbb{Z}$ i.e. *L^A* $\sqrt{2}$ $\|$ \perp \perp \perp \perp \perp \perp \perp \perp *c*1 *c*2 . . . *cn* $\overline{}$ \perp $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ \perp fl $\sqrt{2}$ ‹ ‹ ‹ ‹ ‹ ‹ ‹ $\overline{ }$ $=$ A $\sqrt{ }$ \perp \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \perp \perp \mathbf{I} *c*1 *c*2 . . . *cn* $\overline{1}$ \perp \perp \perp \perp \perp \perp \perp fl \in $\sqrt{ }$ \perp \perp \perp \perp \perp \perp \perp \perp *d*1 *d^m* $\overline{}$ \perp \perp \perp \perp \perp \perp \perp fl $\in \mathbb{Z}^m$

Claim: *L^A* is a homomorphism.

Studying the Homomorphism from Z*ⁿ* to Z*^m* Also, any homomorphism $\alpha : \mathbb{Z}^n \to \mathbb{Z}^m$ is equal to L_A for a unique $A \in Mat_{m \times n}(\mathbb{Z})$ Furthermore $\mathbf{A} \in \mathsf{Mat}_{m \times n}(\mathbb{Z})$ $\boldsymbol{B} \in \mathsf{Mat}_{\boldsymbol{\mathcal{B}} \times p}^{\boldsymbol{n}}(\mathbb{Z})$ $\frac{\text{Then:}}{2}$ $\text{L}_{\text{AB}} = \text{L}_{\text{A}} \circ \text{L}_{\text{B}}$ L_{B} $\$ Z*n* Z*p LA* same *LAB LB* To find out what this matrixis, we can plug to the a "standard basis" to 2

Studying the Homomorphism from \mathbb{Z}^n to \mathbb{Z}^m

Rem: Suppose $L_{\mathbf{A}} : \mathbb{Z}^n \to \mathbb{Z}^m$ is an isomorphism $[\mathbf{A} \in \mathsf{Mat}_{m \times n}(\mathbb{Z})]$ Then $(L_{\mathbf{A}})^{-1}$: $\mathbb{Z}^m \to \mathbb{Z}^n$ is also an isomorphism L_B for some $B \in \text{Mat}_{n \times m}(\mathbb{Z})$

Smith Normal Form

[When $\mathbf{A} \in \mathsf{Mat}_{m \times n}(\mathbb{Z})$], \mathbf{A} is in Smith normal form if $A = diag(d_1, d_2, ..., d_s), d_1 \le 0, d_i | d_{i+1}$ $S = min(m, n)$

Prop: If $A = diag(d_1, ..., d_s) \in Mat_{m \times n}(\mathbb{Z})$ [Smith Normal Form]	
$\mathbb{Z}^m/L_A(\mathbb{Z}^n) \simeq \mathbb{Z}/\mathbb{Z}_{d_1} \times ... \times \mathbb{Z}/\mathbb{Z}_{d_s} \times \mathbb{Z}^{m-s} = G$	
$\underline{Proof:}$	$\mathbb{Z}^m \xrightarrow{\varphi} G$ by
$(x_1, ..., x_s, x_{s+1}, ..., x_m) \mapsto ([x_1]_{d_1}, ..., [x_s]_{d_s}, \underbrace{x_{s+1}, ..., x_m}_{s_s})$	

\nThis is surjective, $\ker \varphi = L_A(\mathbb{Z}^n)$ \Leftrightarrow \Leftrightarrow $\frac{\pi}{15 + n}$

\nmeans: $X_{\text{St1}, ..., Y_{n_1}} \wedge \text{Piz} \wedge \text{Piz} \wedge \text{Piz}$

\nand, $X_i(d_i) = \frac{\pi}{15 + n}$

\nSince $(\varphi) = \text{Eiz}_{\text{max}} \wedge \text{Piz}_{\text{max}} \w$

Prop: If $\mathbf{B} = \mathbf{P}\mathbf{A}\mathbf{Q}, \mathbf{A}, \mathbf{B} \in \text{Mat}_{m \times n}(\mathbb{Z})$ *P, Q* \mathbb{Z} – invertible then $\mathbb{Z}^m / L_{\mathbf{A}}(\mathbb{Z}^n) \cong \mathbb{Z}^m / L_{\mathbf{B}}(\mathbb{Z}^n)$. Say that $A \backsim B$ "equivalent". $\Pi_A : \mathbb{Z}^m \to \mathbb{Z}^m / L_A(\mathbb{Z}^n)$ $\Pi_B : \mathbb{Z}^m \to \mathbb{Z}^m / L_B(\mathbb{Z}^n)$

Claim: ker $\varphi = L_{\mathbf{B}}(\mathbb{Z}^n)$

$$
x \in \ker \varphi \Longleftrightarrow P_{x}^{-1} \in \ker \Pi_{A}
$$

\n
$$
\Longleftrightarrow P_{x}^{-1} = Ay \text{ for some } y \in \mathbb{Z}^{n}
$$

\n
$$
\Longleftrightarrow P_{x}^{-1} = AQz, \text{ for some } z \in \mathbb{Z}^{n} [z = Q^{-1}y]
$$

\n
$$
\Longleftrightarrow x = PAQz = Bz \text{ for some } z \in \mathbb{Z}^{n}
$$

\n
$$
\Longleftrightarrow x \in L_{B}(\mathbb{Z}^{n})
$$